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Faithful transmission of beneficial symbionts is critical for the persistence of
mutualisms. Many insect groups rely on extracellular routes that require
microbial symbionts to survive outside the host during transfer. However,
given a prolonged aposymbiotic phase in offspring, how do mothers miti-
gate the risk of symbiont loss due to unsuccessful transmission? Here, we
investigated symbiont regulation and reacquisition during extracellular
transfer in the tortoise beetle, Chelymorpha alternans (Coleoptera: Cassidinae).
Like many cassidines, C. alternans relies on egg caplets to vertically propa-
gate its obligate symbiont Candidatus Stammera capleta. On average, each
caplet is supplied with 12 symbiont-bearing spheres where Stammera is
embedded. We observe limited deviation (±2.3) in the number of spheres
allocated to each caplet, indicating strict maternal control over symbiont
supply. Larvae acquire Stammera 1 day prior to eclosion but are unable to
do so after hatching, suggesting that a specific developmental window gov-
erns symbiont uptake. Experimentally manipulating the number of spheres
available to each egg revealed that a single sphere is sufficient to ensure
successful colonization by Stammera relative to the 12 typically packaged
within a caplet. Collectively, our findings shed light on a tightly regulated
symbiont transmission cycle optimized to ensure extracellular transfer.
1. Introduction
Numerous adaptations in insects reflect a symbiotic condition. By deriving essen-
tial nutrients to exploit an imbalanced diet [1–5], or defensive compounds to fend
off parasitic and pathogenic threats [6–8], many insect clades obligately rely on
mutualistic microbes for development, reproduction and survival [9–13]. Corre-
spondingly, insects evolved a diversity of structures and behaviours to ensure
the persistence of these partnerships across generations [14–16].

Vertical transmission of beneficial microbes is a common characteristic of
obligate symbioses [15–17]. Mechanisms ensuring transfer contribute to the
stability of mutualisms by reducing the risk of symbiont loss, while mitigating
the exposure of juvenile stages to pathogens and parasites [18]. Intracellular
symbionts inhabiting bacteriocytes are typically transferred transovarially
during the early stages of oogenesis or embryogenesis [19–21]. Alternatively,
numerous insect groups rely on extracellular routes to vertically propagate
their symbionts. From egg smearing [22,23] to microbe-embedding secretions
[24–26], these routes are unified by the symbiont’s ability to survive outside
the host. Despite the prevalence of extracellular symbionts in insects and
their demonstrated functional importance [14], mechanistic insights into how
these microbes are regulated, allocated and, ultimately, reacquired during trans-
fer is largely unexplored for most study systems (but see [27–30]). We pursue
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Figure 1. Structure and content of symbiont-bearing egg caplets. (a) The tortoise beetle, Chelymorpha alternans. (b) Eggs deposited on the underside of an
Ipomoea batatas leaf, each topped with a caplet at the anterior pole. (c) Scanning electron microscopy (SEM) image outlining the exterior features of the egg
caplet. (d ) Fluorescence in situ hybridization (FISH) cross-section of a caplet (green: autofluorescence) and its enclosed spheres where Stammera (magenta: 16
rRNA probe) is embedded. (e,f ) SEM images of an inverted caplet detached from the egg. Viewing direction is tilted by approximately 90°. (g) SEM cross-section
of the egg caplet. Abbreviations: c, caplet; m, membrane; s, sphere. Scale bars are included for reference. (Online version in colour.)
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these aims in tortoise beetles (Coleoptera: Chrysomelidea:
Cassidinae), given their obligate symbiosis with Candidatus
Stammera capleta.

Cassidines harbour Stammera in foregut symbiotic organs,
in addition to ovary-associated glands in females [31,32].
Despite its extracellular localization throughout host develop-
ment, Stammera possesses a drastically reduced genome
(0.2 Mb) with a highAT composition [31,33,34]. The symbiont’s
streamlined metabolism is largely dedicated to informational
processing (replication, transcription and translation) and the
production of pectin-degrading enzymes [31,33,34]. Pectinases
supplemented by Stammera are critical in allowing cassidines
to digest plant leaves rich in recalcitrant pectins, such as homo-
galacturonan and rhamnogalacturonan I [35]. Symbiont loss
results in a diminished pectinolytic phenotype and low larval
survivorship [31], reflecting the key role Stammera plays in the
digestive physiology of its beetle host [33].

In ensuring that future generations of cassidines are
endowed with Stammera, females deposit symbiont-bearing
‘caplets’ at the anterior pole of each egg during oviposition
[31]. Caplets are populated by spherical secretions where
Stammera is embedded (figure 1a–d). While the consumption
of Stammera-bearing spheres is predicted to initiate infection
in cassidines [31], the timing of symbiont acquisition relative
to larval hatching from the egg (eclosion) remains elusive.
Since Stammera subsists extracellularly in the caplet while
the embryo develops in the egg, mothers must balance sym-
biont allocation against the risk of aposymbiosis due to
unsuccessful transmission. Cassidinae eggs hatch 7–14 days
after oviposition [36,37], exposing symbiont-bearing caplets
to several environmental stresses (e.g. high temperature,
ultraviolet radiation and desiccation) that may mitigate
symbiont viability within these structures.

In this study, using the cassidine Chelymorpha alternans as
a model (figure 1a), we (i) determine the mechanism and
timing of symbiont acquisition from the egg caplet, (ii) quan-
tify within-caplet symbiont population dynamics during
embryo development and eclosion from the egg, and (iii),
through experimental manipulation, estimate the threshold
number of Stammera-bearing spheres required for successful
vertical transmission relative to the maternal endowment.
Collectively, our findings shed light on a tightly regulated
symbiont transmission cycle defined by a specific develop-
mental window and calibrated host investment to ensure
successful transfer.
2. Results and discussion
(a) A membrane separates Stammera from the

developing embryo in the egg
We applied confocal and scanning electron microscopy (SEM)
to better characterize the content, structure and attachment of
symbiont-bearing caplets to C. alternans eggs. Positioned at
the anterior pole of each egg (figure 1b,c), the caplet and the
spheres it encloses are separated from the developing embryo
by a thin membrane (figure 1d–g). This may ensure that
Stammera is only acquired when the gut, and its associated
symbiotic organs, are fully formed during the secondary
stages of embryo development. On average, each caplet
encloses 12.45 (± 2.3) spheres where Stammera is embedded.
The limited deviation observed between caplets relative to
their associated spheres indicates that females strictly control
how these symbiont-bearing secretions are allocated to each
egg during oviposition,mirroring other highly selective vertical
transmission strategies where symbiont supply is tightly cali-
brated during transfer [19,28,38]. Plataspid stinkbugs, which
rely on egg capsules to vertically transmit their nutritional sym-
biont Ishikawaella display similar control over the microbe’s
allocation by depositing a single capsule for every four eggs
irrespective of clutch size [28].

(b) Stammera population is stable during embryo
development in the egg caplet and is acquired
prior to hatching

As C. alternans requires up to 11 days to complete its develop-
ment in the egg prior to hatching [36], we aimed to describe
Stammera’s population dynamics during that period. This
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Figure 2. (a) Symbiont population dynamics in the caplet during embryo development in the egg following the quantification of 16S rRNA gene copy numbers.
Lines represent medians, boxes indicate 25–75 percentiles, and whiskers denote range. Different letters above boxes indicate significant differences (LM, p = 0.016).
(b) FISH cross-sections of egg caplets (green: autofluorescence) and its enclosed spheres where Stammera (magenta: 16 rRNA probe) is embedded 7, 9 and 10 days
following oviposition. Membrane is intact up until day 10. Scale bar is included for reference. (Online version in colour.)
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revealed a symbiont population that is highly stable up until
larvae eclose (figure 2a) (linear model (LM), F5,23= 3.57, p =
0.016). While the membrane separating symbiont-bearing
spheres from the embryo remains intact throughout develop-
ment, it is pierced 1 day prior to hatching (figure 2b). This
indicates that C. alternans does access its symbiont population
while still in the egg, in contrast with other insect clades relying
on extracellular symbiont transmission routes [14], such as egg
smearing [22,23], and capsule- [25] and jelly-transmission [24].
These routes all require behavioural and structural adaptations
facilitating post-hatch acquisition of beneficial microbes [14],
usually through the active probing of symbiont-bearing egg-
shells [22], soil [39] or maternally provisioned secretions [24,–
27]. In quantifying symbiont abundance in caplets after hatch-
ing, and following larval abandonment of the egg clutch, we
observe that more than a third (37%) of the symbiont’s popu-
lation is discarded along with the chorion (figure 2a) (LM,
F5,23= 3.57, p = 0.016), suggesting that maternal allocation of
Stammera may greatly exceed the threshold necessary to
ensure successful vertical transmission.

(c) Aposymbiotic larvae do not reacquire Stammera
after hatching

To confirm that Stammera is only acquired by its host prior to
hatching, we examined symbiont infection dynamics across
four experimental treatments (figure 3a): (a) untreated con-
trol, (b) eggs whose caplets were removed, (c) eggs whose
caplets were removed, then deposited immediately adjacent
to the egg, and (d) eggs whose caplets were removed, but
all the encased spheres were reapplied to the anterior pole
of the egg. Contingency tables (2 × 2) and accompanying
Pearson’s Chi-squared tests were used to evaluate the effect
of experimental manipulation of the egg caplet on Stammera
infection frequencies in C. alternans larvae.

Caplet removal disrupts the transmission of Stammera,
generating aposymbiotic larvae in C. alternans (Chisq test,
χ2 = 28.45, d.f. = 1, p < 0.001) (figure 3a), consistent with prior
findings inCassida rubiginosa (Chrysomelidea: Cassidinae) [31].
Reapplying Stammera-bearing spheres to eggs whose caplets
were experimentally removed restored symbiont infection
rates to levels mirroring the untreated control group (Chisq
test, χ2 = 2 × 10−31, d.f. = 1, p = 1) (figure 3a), confirming that
larval access to spheres while in the egg is critical for infection.
Stammera infection in both groupswas consistently high (91.7%
(CI = 74–98%), untreated control; 89.17%, spheres reapplied
(CI = 71–97%)) save for a few desiccated individuals that
failed to transition onto the host plant. By contrast, caplet
placement in the immediate vicinity of eggs lacking these struc-
tures did not rescue infection in aposymbiotic C. alternans
(Chisq test, χ2 = 36.04, d.f. = 1, p < 0.001) (figure 3a), despite
our observation that larvae actively probed the caplets after
hatching. This rules out caplet-sharing among siblings and
suggests that a specific developmental window governs sym-
biont acquisition in cassidines—one that precedes eclosion
from the egg. Examples of developmental regulation of
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Figure 3. (a) Stammera infection frequencies in C. alternans larvae following experimental manipulation of the egg caplet (Pearson’s χ2-squared test, χ2 = 68.62,
d.f. = 3, p < 0.001). Bar coloration signifies the experimental treatment. Number of samples = 87 larvae; Caplet intact (24), Caplet removed (19), Caplet reapplied
(23) and Spheres reapplied (21). Whiskers denote the 95% binomial confidence intervals. (b) Larval survivorship (to adult eclosion) following experimental removal
the egg caplet. Line coloration signifies the experimental treatment. Asterisks indicate significant differences between treatments (Cox’s model, p < 0.001). (Online
version in colour.)
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symbiont acquisition are common in insects and other invert-
ebrates [26,30,40]. Infection competence can vary significantly
across juvenile insect stages, as demonstrated in the bean bug
Riptortus pedestris (Hemiptera: Alydidae) in its symbiosis
with Burkholderia insecticola [30]. This ensures that symbiont
colonization preferentially occurs during a specific nymphal
stage [30], where access to the midgut crypts is subsequently
constricted following Burkholderia passage [41]. By limiting
prolonged access of symbiotic organs to potential pathogens
and parasites, these strategies may be especially common in
insects acquiring extracellular symbionts from the environment
or maternal secretions [42].

(d) Chelymorpha alternans is obligately dependent on
Stammera

As the impact of Stammera on host fitness has only been demon-
strated in C. rubiginosa [31], we aimed to additionally confirm
the symbiont’s beneficial role in C. alternans. The survivorship
of symbiotic larvae was compared with aposymbiotic insects
hatching from caplet-free eggs (figure 3b; electronic supple-
mentary material, table S1). Aposymbiotic larvae exhibited
significantly lower survivorship (none reached adulthood)
relative to the symbiotic control (Cox’s model, χ2 = 118, d.f. = 1,
p< 0.001), demonstrating that C. alternans, like C. rubiginosa, is
obligately dependent on Stammera for successful development.

(e) Maternal investments ensuring extracellular
symbiont transmission

With more than a third of a caplet’s Stammera population dis-
carded along with the chorion after hatching (figure 2a), we
aimed to explore the degree to which female cassidines
invest to ensure successful symbiont transmission. Specifi-
cally, we asked how many spheres are necessary to initiate
infection by Stammera and rescue survivorship in aposymbio-
tic larvae. We addressed this question by capitalizing on
the tractability of a transiently aposymbiotic phase during
embryo development, along with our ability to individually
reintroduce Stammera-bearing spheres to eggs whose caplets
were experimentally removed (electronic supplementary
material, video S1). We monitored symbiont abundance
along with larval survivorship across four experimental treat-
ments: (a) eggs whose caplets were left untreated, in addition
to caplet-free eggs that were either reinfected with (b) one
sphere, (c) three spheres or (d) the entire sphere content
harvested from an individual caplet (figure 4).

To verify how infection dosage affects symbiont population
density across larval development, we quantified Stammera
abundance in 6- and 12-day-old insects spanning all four
experimental groups.While symbiont density did vary initially
across treatments in 6-day-old larvae (LM, F3,11= 5.65,
p = 0.014), these differences were no longer significant when
we sampled again 6 days later (LM, F3,11 = 1.5, p = 0.27)
(figure 4a), indicating that Stammera’s population recovered
across all groups. Reflecting the consistency in symbiont abun-
dance irrespective of initial inoculation dose, all four
treatments reached adulthood at a similar rate (Cox’s model,
χ2 = 4, d.f. = 3, p = 0.3) (figure 4b; electronic supplementary
material, table S1), in contrast with the low survivorship
recorded for aposymbiotic insects (figure 3b). Since our bio-
assays featured larvae, future studies will assess how
variation in symbiont supply shapes the overall fitness of the
beetle host. Initial differences in Stammera abundance did not
impact larval survivorship (figure 4), but potential metabolic
costs incurred during that stage may still carry over to pupae
and adults, shaping subsequent fitness. As demonstrated in
aphids, differences in symbiont density early in insect develop-
ment are correlated with fitness consequences that extend
beyond the survivorship of immature stages, including
growth rate and lifetime reproductive output [43]. Quantifying
a broader set of fitness parameters in C. alternans relative to
variation in Stammera titres will complement these efforts
[43,44], yielding important insights into symbiont density
dependence in obligate partnerships.

As a single symbiont-bearing sphere is sufficient to ensure
the successful acquisition of Stammera by C. alternans, our find-
ings indicate that females invest nearly 12 × that amount to
mitigate the risk of symbiont loss during transmission. We do
note that our experiments were conducted under controlled
conditions that may not reflect the environmental challenges
encountered by cassidine eggs in the field [36], ranging from
sharp fluctuations in temperature and humidity, to high UV
exposure on plant leaves. Accounting for the drastic impact
of aposymbiosis on host development (figure 3b), host invest-
ment is likely justified and optimized given the susceptibility
of many obligate symbionts to abiotic challenges [45–47]. Our
findings are consistent with previous studies examining
maternal investments relative to symbiont transmission routes
[27,28]. Among plataspid stinkbugs, mothers supply 10 x the
number of symbiont cells that is minimally required for the
extracellular transfer of Ishikawaella [28], possibly also reflecting
the prolonged exposure of the symbiont-bearing capsules to
environmental challenges during embryo development in the
egg [27]. This contrasts with the selective and finely tuned
mechanisms ensuring the vertical transmission of intracellular
symbionts in insects [19,20,48,49]. In aphids, Buchnera cells are
released frommaternal bacteriocytes, where they are eventually
endocytosed by cells fated to become bacteriocytes in the devel-
oping embryo [19]. Buchnera cells that are not transmitted are
ultimately tagged and recycled by the host through Rab7
recruitment and lysosomal activity [50].

By upgrading the nutritional physiology of cassidines
through the production of pectinases that function in the gut
lumen [31], the extracellular localization of Stammera is likely
selected for given the complications associated with bacterial
enzyme translocation across eukaryotic host membranes [51,52].
While an extracellular placement offers a streamlined path
for pectinases to reach the gut, a trade-off may govern how
efficiently Stammera is packaged and transmitted across host gen-
erations. Here, we observe that maternal allocation of Stammera-
bearing spheres appears to exceed the threshold required for
successful symbiont transfer, likely reflecting the abiotic chal-
lenges encountered by the caplet while the embryo completes
its development in the egg. Our findings indicate that, for a
microbe, living outside a cell incurs host investments divergent
from those that would be expected from a strictly intracellular
lifestyle.
3. Methodology
(a) Insect rearing
A laboratory culture of Chelymorpha alternans is continuously
maintained at the Max Planck Institute for Biology in Tübingen,
Germany. The insects are reared in mesh containers (30 × 30 ×
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35 cm) along with their host plant Ipomoea batatas. Experimental
treatments were maintained in climate chambers at a constant
temperature of 26°C, humidity of 60% and long light regimes
(14.30 h/9.30 h light/dark cycles).

(b) Scanning electron microscopy
Egg clutches and caplets of C. alternans were either air-dried or
chemically fixed and critical point-dried, mounted on stubs
and sputter-coated with a 10 nm thick layer of platinum (CCU-
010, Safematic). Egg clutches were fixed with a solution of
2.5% glutaraldehyde in phosphate-buffered saline (PBS) for 3
days at room temperature, washed and dehydrated in a graded
ethanol series with 24 h incubation for each step, followed by
critical point drying (CPD300, Leica). Egg caplets were also
fixed in 2.5% glutaraldehyde in PBS and post-fixed with 1%
osmium tetroxide for 1 h on ice. Ethanol series, critical point
drying and sputter-coating were performed as described for
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the egg clutches. Samples were examined with a field emission
scanning electron microscope (Regulus 8230, Hitachi High
Technologies) at an accelerating voltage of 3 kV.

(c) Fluorescence in situ hybridization
To localize Stammera within the egg caplet, we employed fluor-
escence in situ hydrization (FISH) using semi-thin section
preparations. An oligonucleotide probe specifically targeting
the 16S rRNA sequence of Stammera in C. alternans, SAL1055
(50-GUAGAAGUGCUUUCGAGAACACUA0-3), was designed
using ARB software [53]. Eggs were incubated at 26°C and
60% humidity, and sampled at days 7, 9 and 10 after egg
oviposition. Eggs were then fixed in 4% formaldehyde (in PBS,
v/v) (v/v) (Electron Microscopy Sciences, PA, USA) at 4°C
during 12 h under moderate agitation, and embedded in Para-
plast High Melt (Leica, Germany). The paraffin-embedded eggs
were cross-sectioned at 10 μm using a microtome and mounted
on poly-L-lysine-coated glass slides (Sigma-Aldrich, MO, USA)
using a water bath. Egg sections were left to dry in vertical pos-
ition at room temperature for 4 h and baked at 60°C for 1 h for
tissue adherence improvement. They were dewaxed with Roti®-
Histol (Carl-Roth, Germany) in three consecutive steps for
10 min each followed by decreasing ethanol series of 96, 80, 70
and 50% (v/v) for 10 min each and then washed in milliQ
water for 10 min. Slides were dried at 37°C for 30 min and sec-
tions were surrounded by a PAP-pen circle (Sigma-Aldrich,
MO, USA) to avoid buffer leaking during hybridization. The
probe SAL1055 doubly labelled with the fluorophore Cy5 was
dissolved at 5 ng μl−1 in hybridization buffer containing 35% for-
mamide, 80 mM NaCl, 400 mM Tris-HCl, 0.4% blocking reagent
for nucleic acids (Roche, Switzerland), 0.08% SDS (v/v) and
0.08% dextran sulfate (w/v). Fifty microlitres of hybridization
buffer was used per egg section. The slides were placed in a
hybridization chamber at 46°C for 4 h with KIMTECHScience
precision wipes (Kimberly-Clark, TX, USA) partially soaked in
35% formamide to maintain a humid atmosphere. Egg sections
were rinsed in pre-warmed 46°C washing buffer (0.07 M NaCl,
0.02 M Tris-×HCl pH 7.8, 5 mM EDTA pH 8 and 0.01% SDS (v/
v)) and transferred to fresh pre-warmed washing buffer for
15 min followed by 20 min in 1× PBS, 1 min in milliQ water, and
a quick wash in ethanol 96% (v/v), and dried at 37°C for 20 min.
All sections were mounted using ProLong® Gold antifade mount-
ing media (Thermo Fisher Scientific, MA, USA) and cured
overnight at room temperature. Images were visualized using a
dual system Zeiss LSM 780 & Airyscan detector.

(d) Quantifying symbiont-bearing spheres and
Stammera relative abundance in the egg caplet

DNA was extracted from C. alternans egg caplets using the
EZNA® Insect DNA Kit. Stammera relative abundance was esti-
mated using an Analytik Jena qTOWER³ cycler. The final
reaction volume of 25 μl included the following components:
1 μl of DNA template, 2.5 μl of each primer (10 μM) (electronic
supplementary material, table S2), 6.5 μl of autoclaved distilled
H2O, and 12.5 μl of Qiagen SYBR Green Mix. Primer specificity
was verified in silico by comparison with reference bacterial
sequences in the Ribosomal Database and NCBI. Additionally,
PCR products were sequenced to confirm primer specificity
in vitro. Standard curves (10-fold dilution series from 10−1 to
10−8 ng μl−1) were generated using purified PCR products and
measuring their DNA concentration using a NanoDrop
TM1000 spectrophotometer. The following cycle parameters
were used: 95°C for 10 min, followed by 45 cycles of 95°C for
30 s, 62.7°C for 20 s, and a melting curve analysis was conducted
by increasing temperature from 60 to 95°C during 30 s. Based on
the standard curve, absolute copy numbers were calculated,
which were then used to extrapolate symbiont relative abun-
dance by accounting for the single copy of the 16S gene in
Stammera’s genome, as previously described [53]. The number
of spheres enclosed within each caplet were counted under a
stereo microscope (ZEISS Stemi 305) across 20 egg clutches
(3 eggs per egg clutch, i.e. 60 caplets).

(e) Experimental manipulation to elucidate the timing
of symbiont acquisition

Egg clutches were collected from three mating pairs to avoid
pseudo-replication. The clutches contained 30 or more eggs with
well-defined caplets. Eggs were then separated into four exper-
imental treatments: (a) untreated control (24 eggs); (b) eggs
whose caplets were removed (19 eggs); (c) eggs whose caplets
were removed, then deposited immediately adjacent to the egg
(23 eggs); and (d) eggs whose caplets were removed, but all the
enclosed spheres were reapplied to the anterior pole of the egg
(21 eggs). For treatment (b), caplets were carefully separated
from their eggs using sterile dissection scissors and without pier-
cing the developing embryo. Caplet-free eggs were additionally
supplied with small ethanol droplets to complete the symbiont-
clearing procedure. To test whether Stammera can be acquired
post-eclosion, dissected caplets were reapplied immediately next
to caplet-free eggs using the same procedure as above, resulting
in treatment (c). To confirm that Stammera-bearing spheres must
be accessible to developing embryos prior to hatching for infection
to take place, we re-applied the spheres onto the anterior pole of
caplet-free eggs, yielding treatment (d).

Three days after hatching, symbiont infection frequencies were
validated across all treatments using diagnostic PCR. DNA was
extracted from larvae using the EZNA® Insect DNA Kit. PCR-pri-
mers targeting the 16S rRNA gene of Stammerawere used to verify
the symbiotic status of the host beetles (electronic supplementary
material, table S2). Additionally, specific primers for the CO1
gene of C. alternans were used as a control for the DNA extraction
(electronic supplementary material, table S2). Diagnostic PCRwas
conducted on an Analytik Jena Biometra TAdvanced Thermal
Cycler using a final volume of 20 μl containing 1 μl of DNA tem-
plate, 0.5 μM of each primer and 2× DreamTaq Green PCR
Master Mix. The following cycle parameters were used: 5 min at
95°C, followed by 34 cycles of 95°C for 30 s, 57.7 or 62°C (depend-
ing on the primer) for 30 s, 72°C for 1 min and a final extension
time of 2 min at 72°C.

( f ) Quantifying the impact of symbiont loss on
Chelymorpha alternans

To assess the impact of symbiont loss on larval survivorship
to adulthood, eight egg clutches originating from different
C. alternans females were collected. Each clutch was then separated
into two experimental treatments: (a) untreated control and (b) eggs
whose caplets were removed as outlined above. Larvae were
observed daily for the assessment of fitness effects across both
groups, and survival until adulthoodwas recorded. All experimen-
tal groups were subsampled throughout using Stammera-specific
diagnostic PCR to confirm the symbiotic status of each treatment.

(g) Experimental manipulation of symbiont spheres
To estimate the threshold symbiont titre for successful vertical
transmission relative to the maternal endowment, we asked
how many symbiont-bearing spheres are necessary to ensure
the successful propagation of the symbiosis and rescue host fit-
ness. Five egg clutches were collected from separate females
and divided into four experimental treatments: (a) untreated con-
trol, in addition to caplet-free eggs (as outlined above) that were
reinfected with either (b) one sphere, (c) three spheres or (d) the
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entire sphere content harvested from of a single caplet. Spheres
were reintroduced to caplet-free eggs 2 days prior to eclosion
through careful deposition on the anterior pole of each egg
(electronic supplementary material, video S1).

The impact of the reinfection procedure on Stammera’s popu-
lation was estimated through quantitative PCR. Larvae were
sampled from each treatment 6 and 12 days after hatching. DNA
was extracted using the EZNA® Insect DNA Kit. Stammera relative
abundance was estimated using an Analytik Jena qTOWER³
cycler. The final reaction volume of 25 μl included the following
components: 1 μl of DNA template, 2.5 μl of each primer (10 μM)
(electronic supplementary material table S2), 6.5 μl of autoclaved
distilled H2O and 12.5 μl of Qiagen SYBR Green Mix. Standard
curves (10-fold dilution series from 10−1 to 10−8 ng μl−1) were
generated using purified PCR products and measuring their DNA
concentration using a NanoDrop TM1000 spectrophotometer.
The following cycle parameters were used: 95°C for 10 min,
followed by 45 cycles of 95°C for 30 s, 62.7°C for 20 s, and a melting
curve analysis was conducted with increasing temperature from
60 to 95°C during 30 s.

To assess the impact of symbiont reinfection on larval survi-
vorship to adulthood, eclosing larvae were observed daily for the
assessment of fitness effects across all four groups, and survival
until adulthood was recorded as outlined above.

(h) Statistical analyses
Symbiont population dynamics during egg development were
analysed using a general linear model, after reverse transform-
ation and validation of a normal distribution, and using time
as a fixed factor. To investigate the number of spheres required
to reconstitute symbiont colonization, Stammera relative abun-
dance was also analysed using a general linear model, after
validation of the normal distribution and using the different
treatments as a fixed factor. For these two statistical models,
the post hoc TukeyHSD test was performed using the ‘glht’ function
with Bonferroni corrections. Pearson’s χ2 tests were used
to evaluate the effect of experimental manipulation of egg
caplets on Stammera infection frequencies inC. alternans larvae.Che-
lymorpha alternans survival rate until adulthood was analysed
across the different experimental treatments with a proportional
hazards regression [54] and visualized by computing the Kaplan–
Meier survival functions [55]. Statistical analyses were performed
in R v. 3.5.3 [56], using the prop.test() function to obtain the 95%
confidence intervals for a binomial distribution, the survival pack-
age for survival analyses [57], multcomp package for post hoc
Tukey test [58] and GrapheR package for graphics [59].

Data accessibility. Data and statistical analyses are deposited in Figshare:
https://doi.org/10.6084/m9.figshare.19237194.v1 [60] and in the
electronic supplementary material.
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